Montpellier Business School

Dr. Chen Yi-Ting

Chen Yi-Ting
Fonction Associate professor
Research themes AI and Machine Learning, Big Data, Business and Decision Analytics, Computer Science, Information Technology, Operations Research
Teaching department Sustainable development management: economy, human resources and diversity
Contact

Mail: yt.chen@montpellier-bs.com

Selected intellectual contributions

Posedel Šimović P., Chen Y.-T. & Sun E.. Forthcoming. Classifying the variety of customers online engagement for churn prediction with a mixed-penalty logistic regression. Computational Economics.

Lai W., Chen Y.-T. & Sun E. Forthcoming. Risk Factor Extraction with Quantile Regression Method. Annals of Operations Research .

Chen Y. T., Sun E., Chang M.F. & Lin Y.B. 2021. Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0. International Journal of Production Economics, 238: 108157.

Chen Y.T., Sun E.W. & Lin Y.B. 2020. Machine learning with parallel neural networks for analyzing and forecasting electricity demand. Computational Economics. 56(2): 569–597.

Lai W., Chen YT & Sun EW (2021). Comonotonicity and low volatility effect. Annals of Operations Research. 299 (1-2): 1057-1099.

Chen Y.T., Sun E.W. & Lin Y.B. 2020. Merging anomalous data usage in wireless mobile telecommunications: Business analytics with a strategy-focused data-driven approach for sustainability. European Journal of Operational Research,
281(3): 687-705.

Sun E.W., Kruse T. & Chen Y.T. 2019. Stylized algorithmic trading: satisfying the predictive near-term demand of liquidity. Annals of Operations Research. 281(1/2): 315–347.

Chen Y.T., Lai W. & Sun E.W. 2019. Jump detection and noise separation by a singular wavelet method for predictive analytics of high-frequency data. Computational Economics. 54(2): 809–844.

Chen Y.T., Sun E.W. & Lin Y.B. 2019. Coherent quality management for big data systems: a dynamic approach for stochastic time consistency. Annals of Operations Research. 277 (1): 3–32.

Contact us
Identity(Nécessaire)
Preferred contact method(Nécessaire)
RGPD
Ce champ n’est utilisé qu’à des fins de validation et devrait rester inchangé.
Contactez-nous
Identité(Nécessaire)
Je préfère être contacté par(Nécessaire)
RGPD
Ce champ n’est utilisé qu’à des fins de validation et devrait rester inchangé.
Téléchargement brochure TÉLÉCHARGER LA BROCHURE
Contact PRENDRE CONTACT
Candidature CANDIDATER EN LIGNE